Penalized Regression with Ordinal Predictors
نویسندگان
چکیده
Ordered categorial predictors are a common case in regression modeling. In contrast to the case of ordinal response variables, ordinal predictors have been largely neglected in the literature. In this article penalized regression techniques are proposed. Based on dummy coding two types of penalization are explicitly developed; the first imposes a difference penalty, the second is a ridge type refitting procedure. A Bayesian motivation as well as alternative ways of derivation are provided. Simulation studies and real world data serve for illustration and to compare the approach to methods often seen in practice, namely linear regression on the group labels and pure dummy coding. The proposed regression techniques turn out to be highly competitive. On the basis of GLMs the concept is generalized to the case of non-normal outcomes by performing penalized likelihood estimation.
منابع مشابه
Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملPenalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to pred...
متن کاملRegression with Ordered Predictors via Ordinal Smoothing Splines
Many applied studies collect one or more ordered categorical predictors, which do not fit neatly within classic regression frameworks. In most cases, ordinal predictors are treated as either nominal (unordered) variables or metric (continuous) variables in regression models, which is theoretically and/or computationally undesirable. In this paper, we discuss the benefit of taking a smoothing sp...
متن کاملRidge penalized logistical and ordinal partial least squares regression for predicting stroke deficit from infarct topography
Improving the ability to assess potential stroke deficit may aid the selection of patients most likely to benefit from acute stroke therapies. Methods based only on ‘at risk’ volumes or initial neurological condition do predict eventual outcome but not perfectly. Given the close relationship between anatomy and function in the brain, we propose the use of a modified version of partial least squ...
متن کامل